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Abstract—Survival analysis (SA) is an essential task that aims
to predict survival status and duration, determine individual
and precise treatment strategies, and assess disease intensity
and direction. However, the current research on multimodal SA
has identified three unique challenges: inefficient cross-modal
information integration, insufficient inter-modal key features, and
noisy data. In this paper, we propose a novel SA framework,
named Attention-based Multimodal Bilinear Feature Fusion
(AMBF)-SA, to address the aforementioned challenges. Specifi-
cally, AMBF-SA first performs feature extraction with the off-the-
shelf models on each modality separately, then fuses the features
between multiple sources and modalities using our proposed
AMBF method, and finally outputs the survival prediction by
a multi-layer perception (MLP). Experimental results on the
Non-small Cell Lung Cancer (NSCLC) Radiogenomics dataset
demonstrate remark performance of AMBF-SA compared with
the rest of the experimented models, including the models trained
with single and combined modalities under the Mean Absolute
Error (MAE) and the Concordance Index (C-index) evaluation
metrics, indicating the usefulness of our proposed framework.

Keywords—Attention mechanism, feature fusion, lung cancer,
multimodal machine learning, survival analysis.

I. INTRODUCTION

Survival analysis (SA) is an essential task that aims to
predict survival status and duration, determine individual and
precise treatment strategies, and assess disease intensity and
direction, allowing physicians to select the most opportune
moment for therapeutic intervention, thus avoiding over-
treatment and optimizing the optimal use of medical resources
[1], [2]. Simultaneously, it can also be utilized to assist patients
in planning the remainder of their lives and achieving a more
comprehensive life [3]. Such studies focus on predicting sur-
vival rates for complex ailments by incorporating multi-source
and diverse features extracted from both clinical and medical
image data to enhance the accuracy and personalization of
the predictions. Combining multi-source information for SA
not only assists doctors in better assessing the condition and
treatment plan [2] but also enhances patients’ understanding
of their condition and improves the quality of survival.

Original research on SA mainly focused on the predic-
tions over a single modality of data. As shown in Fig. 1,
the modalities leveraged for previous SA research include
clinical information [4], gene expressions [5], and medical
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Fig. 1. Modalities and sources commonly focused on in current SA research,
including clinical information, gene expressions, and medical images, such as
CT and PET scans.

images [6], such as computed tomography (CT) and positron
emission tomography (PET) scans, and failed to fully ex-
ploit the heterogeneous information represented by different
modalities of data. Additionally, some work also combined
the features extracted from the combination of aforementioned
sources to obtain better performances [7], [8]. Recently, some
studies attempted to employ straightforward feature splicing
techniques [9]-[11]; however, such approaches involved linear
and uncomplicated combinations, failed to fully acknowledge
the deep integration of semantic information from multi-source
data. Considering that directly splicing heterogeneous features
from diverse distributions may also encounter the issue of
feature mismatch; therefore, constructing SA models capable
of integrating heterogeneous features from multiple sources is
a crucial scientific issue. Further experiments and research are
required to enhance the expressiveness and robustness of SA
models through cross-modal feature transformation and fusion.

In terms of multimodal SA, the current research in this field
has identified the following unique challenges: (1) Inefficient
Cross-modal Information Integration. In current research
on multimodal SA, different modalities and sources, such
as CT and PET scans, provide valuable information from
multiple aspects. For instance, CT scans are able to scan
detailed anatomical structures, while PET scans can showcase
lesion activities. Another layer of complexity emerges with
datasets providing clinical details, such as patient histories.
Therefore, the integration of these diverse sources to maximize
predictive value is critical [12]. (2) Insufficient Intra-modal
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Key Features. Within modalities such as CT or PET, it’s
crucial to extract key features. Beyond addressing contrast and
resolution differences, capturing core attributes within each
modality is essential. Neglecting these can yield incomplete
insights [10]. (3) Noisy Data. Noisy data inevitable exists
in current datasets, which may hinder the models’ training
performances. With growing data volumes, it is paramount
to maintain computational efficiencies and model scalabilities
without succumbing to the noisy samples [13].

In this paper, we propose a novel SA framework, named
Attention-based Multimodal Bilinear Feature Fusion (AMBF)-
SA, to address the aforementioned challenges. Specifically, as
shown in Fig. 2, AMBF-SA first performs feature extraction
with the off-the-shelf models on each modality separately,
including the medical images, clinical information, and tumor
segmentations. Consequently, feature fusion between multiple
sources and modalities is performed by utilizing our proposed
AMBF method, which enables handling heterogeneous mul-
timodal data to enhance the SA process. Finally, the sur-
vival prediction is output by a multi-layer perception (MLP).
Notably, AMBF not only considers the uniqueness of each
pattern but also fully exploits the potential correlations across
them, leading to more accurate survival predictions. Experi-
mental results on the Non-small Cell Lung Cancer (NSCLC)
Radiogenomics dataset [14] demonstrate remark performance
of AMBF-SA compared with the rest of the experimented
models, including the models trained with single and combined
modalities under the Mean Absolute Error (MAE) and the
Concordance Index (C-index) evaluation metrics, indicating
the usefulness of our proposed framework.

In summary, our main contributions are as follows:

¢ We introduce a novel SA framework, named AMBEF-
SA, to adeptly manage heterogeneous features present
in multimodal medical data, subsequently improving the
performance of SA.

e We design a two-stage feature fusion strategy, named
AMBE, that fully considers the uniqueness of each modal-
ity and the associations between them. It first processes
the features of each modality with multiple heads of
attention and then cross-fertilizes them to generate the
final output.

o Experimental results demonstrate that AMBF-SA per-
forms optimally among the experimented models, better
than those trained with single and subset modalities.

II. RELATED WORK

In the field of medical image analysis, it is common to per-
form feature extractions and survival analysis (SA) over single
modalities, such as clinical information [4], gene expressions
[5], and medical images [6], such as computed tomography
(CT) and positron emission tomography (PET) scans. Some
work also combined the features extracted from the combina-
tion of aforementioned sources to obtain better performances
[7], [8]. While the integration of machine learning and deep
learning models with medical images offers promising poten-
tial [15], [16], they have achieved performance that competes
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with and even exceeds doctors in some cases [17]; however,
it is rarely employed for mortality prediction. As a result,
this represents a unique and challenging domain, and the
overall performance of available survival analysis techniques
is generally inadequate. Wu et al. [11] proposed the first multi-
modal deep learning method for Non-small Cell Lung Cancer
(NSCLC) survival analysis, known as DeepMMSA, to address
the aforementioned problem. Unlike conventional methods
that relied on clinical data for lung cancer survival analysis
and provided statistical probabilities, DeepMMSA extracted
features from multiple modalities, including CT images and
clinical data, and fused them for survival prediction. Extensive
experimental results demonstrated the underlying relationship
between prognostic information and radiomic images, together
with the superiority of DeepMMSA over traditional unimodal
approaches, leading to increased accuracy for survival pre-
diction. To improve the extraction of latent features from
medical images, Wang et al. [18] retrieved radiomic features
from regions of interest (ROI) and combined these features
for survival prediction outcomes. Additionally, they employed
multidimensional intra- and peritumoral features for patients
with clinical stage and pathologic stage IA pure-solid NSCLC
so as to provide personalized survival risk stratification. This
method demonstrated the efficacy of stratifying survival risks
for patients with clinical and pathologic stage IA pure-solid
NSCLC with the utilization of multiregional radiomics signa-
ture, improving the discriminative ability beyond conventional
clinical predictors.

Previous research has demonstrated the effectiveness of ma-
chine learning and radiomics analysis methods in the overall
survival (OS) of NSCLC predictions. Sun et al. [19] extracted
tumor features from pre-processed CT images, quantifying tu-
mor phenotypic characteristics based on shape, size, intensity
statistics, and texture. With the utilization of 5 feature selection
methods and 8 machine learning models, they concluded that
the gradient boosting linear models based on Cox’s partial like-
lihood (GB-Cox) with the concordance index (CI) feature se-
lection method achieved the overall optimal performance. For
enhanced application of radiomic features in survival analysis,
Miiller-Franzes et al. [20] conducted reliability analysis on CT
and MRI radiomic features, improving the predictive capability
of the underlying model for clinical imaging modalities and
tumor entity patient survival prior to reliability analysis and
selecting the most reliable radiomic features. Blanc-Durand et
al. [21] adopted LASSO Cox regression to obtain progression-
free survival (PFS) and OS-pPET-RadScores when predicting
survival of hepatocellular carcinoma (HCC). Kaplan-Meier
method was used to estimate the survival curve to explore
the potential association of the PET radiomics signature with
the PFS and overall survival OS.

Under the multimodal setting, Chen et al. [22] assessed
the association of radiological imaging and gene expression
with patient outcomes in NSCLC and constructed a nomogram
by combining selected radiomic, genomic, and clinical risk
factors with the extraction of handcrafted radiomic features
and deep learning genomic features. To address the costly and
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time-consuming shortcomings in tumor localization, Dao et
al. [23] proposed a tumor segmentation model, named Multi-
scale Aggregation-based Parallel Transformer Network (MAP-
TransNet), by employing parallel transformer mechanism to
capture the global context of multi-scale encoder feature maps
and then concatenated them to obtain global context at multi-
scale maps. Furthermore, they concluded the utilization of
multimodal features offered abundant information pertaining
to survival analysis task in NSCLC.

III. METHODOLOGY
A. Problem Definition

Given a multimodal medical dataset with CT images, PET
images, clinical data, and a region of interest (ROI), our
objective is to predict the corresponding survival time. For
a CT image Icr, lung features are extracted using the combi-
nation of lungmask and ResNet-18, represented by Fer =
Elung({ct). Simultaneously, for a PET image Ipgr, features are
delineated using ResNet-18, denoted as Fpgr = Flres(IpeT)-
Clinical data, referred to as Dgjinic, undergoes pre-processing
techniques, such as one-hot encoding, and scaling to produce
the feature Fijini.. Radiomic features from the ROI, R, in the
CT image Icr, are extracted using PyRadiomics, resulting in
Frada = Erad(R, Icr). In the feature fusion phase, we utilize our
proposed AMBF method, formulated as F' = AMBF(Fyjinic +
Fraa, AMBF(Fer, Fper)). This fused feature F is then input
into a designed multi-layer perceptron (MLP) for predicting
the survival time, expressed as y = MLP(F'). The overarching
aim is to leverage features from various medical modalities
through an efficient fusion strategy to predict survival times
accurately.

B. Feature Extraction

1) CT/PET Image Feature Extraction: We employ a U-Net
model [24] pre-trained on a on a subset of the LTRC dataset
to extract features from CT images, with the utilization of a
renowned lungmask toolkit [25], providing a high capabil-
ity to efficiently reduce false positives, enhancing prediction
accuracy, and also facilitates direct execution of the R231 and
LTRCLobes models via fusion results. Having resized the CT
images to a uniform 224 x 224 pixels, they are fed into the
U-Net model. The model subsequently outputs a lung region
mask with a resolution of 512 x 512 pixels. To maintain data
integrity, we institute a filtering criterion: images are excluded
if the non-zero pixel count in the mask falls below 5% of the
total possible pixel count for a 512 x 512 dimension.

Following the lung field pre-processing, CT and PET im-
ages, though processed separately, are both channeled into
ResNet-18 [26] for individual feature extraction. ResNet-
18, a sophisticated structure of convolutional layers, pooling
segments, and a diverse range of residual units, operates based
on the foundational equation, as shown in Eq. (1) as follows:

y=F W)+, M

where x and y represent the input and output, F' is the neural
operations within the residual block, and W is their associated
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weights. At the end of the model, we add a linear layer to
adjust the feature dimensions for each patient, and both PET
and CT features are saved with a feature dimension of 1, 500
to facilitate the use of image features in the next step. With
ResNet-18, we achieve a comprehensive feature representation
for both CT and PET images, each set capturing distinct
features inherent to their respective modalities.

2) Radiomic Feature Extraction: In this research, we per-
form an in-depth quantitative analysis of medical images so as
to utilize radiomics features. Using the PyRadiomics software
package [27], 18 categories of radiomics features, amounting
to a total of 1,682 individual features, are extracted from
CT images and their corresponding ROI segmentation. These
features encompass the original images, as well as their various
transformations, including exponential, gradient, square, and
square root images. Additionally, features derived from images
transformed by specific filters such as wavelets, Gaussian
Laplace, and various local binary patterns are also considered.
Such transformations provides a multi-dimensional viewpoint
for the extraction of features. For instance, edges and structures
are accentuated in gradient images [28], while specific inten-
sity ranges are highlighted in exponential and square function
images, facilitating enhanced visualization and feature extrac-
tion from diverse image regions [29].

Subtle textures and patterns, which are often challenging
to discern in the original images, are effectively captured
through specific filter transformations, such as the Local
Binary Pattern (LBP) method [30]. Wavelet filters, on the
other hand, allowed for the decomposition of images into
distinct frequency components, emphasizing finer details and
rougher structures within the image [31]. Specifically, first-
order statistics are employed to describe the voxel intensity
distribution within regions of the image defined by masks,
thereby furnishing fundamental image information. Shape-
based descriptors provided insights into the geometric shapes
and sizes of structures within 2D and 3D images. Furthermore,
texture matrix features, encompassing the Gray-Level Co-
occurrence Matrix (GLCM), Gray-Level Dependence Matrix
(GLDM), Gray-Level Run Length Matrix (GLRLM), Gray-
Level Size Zone Matrix (GLSZM), and Neighboring Gray
Tone Difference Matrix (NGTDM), present comprehensive
quantitative depictions of intricate patterns or textures, grant-
ing deeper understandings of the inherent image characteris-
tics.

C. Feature Fusion

We introduce a novel feature fusion methodology, named
Attention-based Multimodal Bilinear Feature Fusion (AMBF),
inspired by both the Transformer architecture [32] and multi-
modal compact bilinear pooling [33], that leverages the multi-
head attention mechanism, designed to address the intricate
challenge of modeling sophisticated cross-modal interactions,
aiming to capture nuanced relationships within and across
modalities. As shown in Fig. 3, AMBF consists of two primary
stages: intra-modal feature attention, which focuses on indi-
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Fig. 2. The overall framework of our proposed AMBF-SA framework, in which the features are firstly extracted with the off-the-shelf models on each
modality separately, and then the feature fusion between multiple sources and modalities is performed by utilizing our proposed AMBF method. Finally, the

survival prediction is output by a MLP model.

vidual modality characteristics, and inter-modal feature fusion,
where cross-modal interactions are harmoniously combined.

1) Intra-modal Feature Attention: Given an input feature
set X from a specific modality, we deploy a multi-head
attention mechanism. Formally, for each input feature x; € X,
the attention mechanism computes a weighted sum of all
features in X, weighted by the attention scores between x; and
every other feature in X. The attention scores are computed
as Eq. (2) as follows:

exp(xg - xy)
> wex exp(i - zx)’

where z; - x; is the dot product between the query representa-
tion of z; and the key representation of ;. The output of this
stage is a set of attention-enhanced features, which capture the
most crucial features within each modality.

2) Inter-modal Feature Fusion: After capturing the es-
sential features within each modality, we focus on fusing
features across modalities. We use a compact bilinear pooling
method known as the count sketch (CS) transformation. For
two modalities A and B with feature vector v4 and vp
respectively, the sketch count transformation is given by Eq.
(3) as follows:

A(l‘i7$j) (2)

3
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where h; and s; are randomly generated parameters, ¢ is
the Kronecker delta function, and d is the feature dimension.
Subsequently, an element-wise multiplication is performed be-
tween the transformed feature vectors of the two modalities to
yield the final fused feature representation, thereby enhancing
the cross-modal interaction representation, as shown in Eq. (4)
as follows:

Vtused = CS(v4) © CS(vp), 4)

in which the symbol © represents element-wise multiplication
between two vectors. The combined effect of the attention
mechanism and the fusion technique allows our approach to
selectively focus on essential features within each modality
while also effectively capturing interactions between them.

D. Survival Prediction

Our approach to survival prediction leans on a neural
architecture, marking a departure from classic Kaplan-Meier or
Cox regression frameworks. We employ a feedforward neural
network tailored to predict the survival times. The network
consists of a single hidden layer of 64 neurons, integrated with
a Sigmoid activation function for non-linearity. To enhance
generalization and prevent overfitting, a dropout mechanism
with a rate of 0.3 is integrated. Central to our training process
is the Mean Absolute Error (MAE) loss, which quantifies the
discrepancy between the predicted and actual survival times.
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Formally, for NV samples, the MAE loss is given by Eq. (5)

as follows: )

N ~
MAE = Nzi:1 |y1 - yi| s )

where y; represents the ground truth and j; is the predicted
survival time. Through this loss function, the model is refined
to offer nuanced predictions, bridging the gap between tradi-
tional and contemporary predictive paradigms.

IV. EXPERIMENTS
A. Dataset

The Non-small Cell Lung Cancer (NSCLC) Radiogenomics
dataset [14] from the Cancer Imaging Archive (TCIA)' is
leveraged as the benchmark dataset in our research, which is a
dataset established to elucidate potential correlations between
the molecular attributes of tumors and the features of medical
imaging, and subsequently to facilitate the development and
evaluation of prognostic medical imaging biomarkers. For
each subject, the available data encompasses CT images, ROI
segmentation of tumors evident in the CT scans, and pertinent
clinical information. The clinical parameters encompass age,
gender, smoking status, TNM staging, overall staging (derived
from TNM), and survival rates.

Thttps://www.cancerimagingarchive.net/
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TABLE I
DEMOGRAPHIC CHARACTERISTICS OF OUR EXPERIMENTAL DATA

Feature Categories Description
Age < 69 years 64 (45.39%)
> 69 years 77 (54.61%)
Male 105 (74.47%)
Sex
Female 36 (25.53%)
Adenocarcinoma 111 (78.72%)
Histology Squamous 27 (19.15%)
Other 3 (2.13%)
T1 & Tis 72 (51.06%)
Pathologica T Stage T2 48 (34.04%)
T3 16 (11.35%)
T4 5 (3.55%)
NO 114 (80.85%)
Pathologica N Stage N1 10 (7.09%)
N2 17 (12.06%)
MO 137 (97.16%)
Pathologica M Stage Mla 1 (0.71%)
MIlb 3 (2.13%)
Non-smoking 22 (15.60%)
Smoking Status Smoking 28 (19.86%)
Former Smoking 91 (64.54%)
Survival Status Alive 91 (64.54%)
Dead 50 (35.46%)

Of the initial 211 subjects, data from 141 patients, en-
compassing clinical information, CT and PET images, and
associated tumor segmentation labels, are incorporated into our
study. The remaining 70 subjects were precluded due to either
a lack of segmentation labels or failure to satisfy modality
data prerequisites. For the selected data, the population of each
clinical attribute are detailed in Table I.

B. Data Pre-processing

A comprehensive pre-processing strategy is implemented
in this research in response to the phenomenon observed
in the data, such as missing values and nominal at-
tributes, including data selection, missing values fulling,
and one-hot encoding. Additionally, the recurrence dates
are simplified by categorizing them based on their re-
spective years, a measure taken to bolster the reliability
of our predictions given our dataset’s size. To refine our
imputation approach, the interval between CT Date and
Date of Last Known Alive is calculated, which then
informs the imputation of Time to Death (days). This
feature underwent min-max normalization to align its scale
with other continuous variables, constraining its values be-
tween 0 and 1, as shown in Eq. (6) as follows:

X - Xmin
Xmax - Xmin

From an imaging perspective, the raw DICOM image data
undergoes conversion to the NIfTI format, a preparatory step

for downstream radiomics analysis and to ensure versatility
in tool compatibility. Image standardization is achieved by

(6)

X scaled —
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mapping pixel values to a mean of 0 and a standard deviation
of 1, with set parameters of 0.5 for both mean and standard
deviation.

C. Experiment Setup

To achieve a fair evaluation, we partition the NSCLC
Radiogenomics dataset into training and test sets at a ratio of
8 : 2. Additionaly, to ensure efficient and stable training, we
utilize an NVIDIA GeForce RTX 3090 24GB graphics card
for all computational tasks. Regarding our training strategy for
the model, we opted for SGD as the optimizer, and we set an
initial learning rate of le — 3 and employ the cosine annealing
approach for dynamic learning rate adjustment. Furthermore,
the number of epochs for training is set as 400.

D. Evaluation Metrics

We adopt the Mean Absolute Error (MAE) and the Con-
cordance Index (C-index) to evaluate the survival prediction
performance our experimented models. The MAE quantifies
the average absolute disparity between the predicted and
actual survival times, acting as an intuitive measure of the
model’s predictive accuracy, where a reduced MAE indicates
superior prediction accuracy [1]. Simultaneously, the C-index
gauges the alignment between the model’s predicted survival
time orderings and the actual observed order for patients
categorized as high or low risk, which can be calculated as
Eq. (7) as follows:

concordant pairs

C —index =

—. @)
comparable pairs
In calculating the C-index, we rigorously adhered to the
guidelines delineated by Harrell et al. [34], especially designed
for datasets encompassing right-censored data. Within this
framework, only pairs of samples with discernible event times,
inclusive of right-censored data, are taken into account, and
a pair is considered comparable if the observed event is not
earlier than the event time of the associated sample.

E. Experimental Results

Experimental results of the models’ performances over the
test set of the NSCLC Radiogenomics dataset are presented
in Table II, in which a reduced MAE and an elevated C-
index indicate a model’s superior performance. From the
experimental results, we can make the following observations:

1) It’s salient to observe that radiomic features attain a
C-index of 0.6497, which notably exceeds the 0.5975
from clinical data. This observation accentuates the
more comprehensive insights provided by radiomics.
Combining both clinical and radiomics features escalates
the C-index to 0.7488, distinctly outpacing individual
modalities. This aligns with current literature emphasiz-
ing the superior efficacy of multimodal approaches over
their unimodal counterparts.

In our image data fusion experiments, relying exclu-
sively on CT+PET results in a C-index of 0.5432. Yet,
integrating the proposed AMBF fusion strategy propels

2)
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TABLE II
PERFORMANCES OF THE MODELS ON THE
NSCLC RADIOGENOMICS DATASET

Method MAE| C-indext
Clinical 0.2534 0.5975
Radiomics 0.2372 0.6497
Clinical+Radiomics 0.1728 0.7488
CT+PET 0.2773 0.5432
CT+PET+AMBF 0.2017 0.6768
AMBF-SA (Ours) 0.1341 0.8325

this value to 0.6768. This significant increment not only
corroborates the robustness of our fusion strategy but
also underlines its adeptness at mining more profound
insights from image datasets.

A cornerstone of our contribution is the novel AMBF-
SA algorithm. Seamlessly integrating data from Clinical
+ Radiomics and CT+PET+AMBEF, it registers excep-
tional performance metrics. With an enviable MAE of
0.1341 and a stellar C-index of 0.8325, the AMBF-
SA methodology eclipses the other techniques assessed.
Such results underline the paramount efficacy of our
proposed technique, hinting at its prospective utility in
the broader research landscape.

3)

V. CONCLUSION AND FUTURE WORK

In this paper, we design a novel SA framework, named
AMBF-SA, to address the three unique challenges identified
in current SA research. We investigate the prognostic value of
various data modalities, including clinical, radiomic, and fused
image data, in predicting survival outcomes for patients within
the NSCLC Radiogenomics dataset. Experimental results un-
der the MAE and C-index metrics underscore the intrinsic
merits of incorporating both clinical and radiomic features,
in which the combined features’ approach notably surpassed
the individual performances of either modality, attesting to
its efficacy. Furthermore, our proposed AMBF-SA method-
ology, which amalgamates the rest of the models, exhibited
unprecedented accuracy, as evidenced by its superior MAE
and C-index metrics, which not only solidifies the potential of
multimodal strategies over their unimodal counterparts but also
emphasizes the versatility and capability of our novel fusion
mechanism.

For future endeavors, we aim to expand our dataset to
enhance the generalizability of our model. Integrating more
diverse imaging modalities may also provide richer infor-
mation for predictions. We also foresee leveraging advanced
deep learning techniques to further refine our fusion strategies,
potentially driving even more robust and accurate prognostic
models for NSCLC patients.
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